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Overdamped motion of Brownian particles in a 1D periodic system with a simple symmetric sawtooth
potential subjected to both unbiased thermal noise and spatially nonhomogeneous three-level colored noise is
considered analytically. Upon application of a tilting force the particles exhibit anomalous transport properties,
namely, absolute negative mobility, negative differential mobility, and the phenomenon of hypersensitive
differential response. It is established that the mobility(differential mobility included) depends nonmonotoni-
cally on the parameters(switching rate, amplitude, and temperature) of nonequilibrium and thermal noises. The
necessary conditions for various anomalous transport properties are found.
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I. INTRODUCTION

The idea that noise, via its interaction with the nonlinear-
ity of the system, can give counterintuitive results, has lead
to many important discoveries: stochastic resonance[1],
resonant activation[2], nonequilibrium phase transitions[3],
and stochastic ratchets(Brownian motors) [4–11], to name
but a few.

Recently, noise-induced anomalous transport phenomena
of Brownian particles in nonlinear periodic structures have
been the topic of a number of physical investigations.
Among them, we can mention such as the ratchet effect,
hypersensitive response, absolute negative mobility(ANM ),
and negative differential resistance(NDR).

The recent fashion for the ratchet effect, i.e., a directed
motion of Brownian particles induced by nonequilibrium
fluctuations, with no macroscopic driving applied, in spa-
tially periodic structures has started with Magnasco’s theo-
retical work[5]. The initial motivation in this field has come
from cell biology, in particular from the studies of the
mechanism of vesicle transport inside eukariotic cells[4–6].
Beyond that, it was suggested that the ratchet mechanism can
be used for obtaining efficient separation methods of nano-
scale objects, e.g., DNA molecules, proteins, viruses, etc.
[4,7,8]. To date, the feasibility of particle transport by man-
made devices has been experimentally demonstrated for sev-
eral ratchet types[8–10]. Many different forms of ratchet
systems are possible. The classification of different types of
ratchets(correlation, flashing, etc.) is in Ref. [4]. Among
them, we can mention the multidimensional ratchets in
which by choosing different potentials, a variety of flow pat-
terns from laminar drifts to rotation can be generated[11].

The motivation to study a hypersensitive response has
come from numerical, analytical and experimental studies of
a nonlinear Kramers oscillator with multiplicative white
noise. Under the effect of intense multiplicative noise the
system is able to amplify an ultrasmall deterministic ac sig-

nal [12]. Afterwards, a related phenomenon such as noise-
induced hypersensitive transport was found in some other
systems with multiplicative colored noise. It was shown that
in such a system a macroscopic flux(current) of matter ap-
pears under the influence of an ultrasmall dc driving[13,14].

A characteristic feature of models with ANM is that upon
the application of an external static forceF, these models
respond with a current that always runs in the direction op-
posite to that of the force(if the force is small enough)
[15–23]. Notably, forF=0 no current appears due to spatial
symmetry of the system. The effect of ANM is distinct from
the phenomenon of negative differential mobility(or resis-
tance) which is, for a sufficiently largeF, characterized by a
decrease of the current as the driving forceF increases, but
the system does not exhibit ANM[24]. Devices that display
both ANM and negative differential resistance exist and they
have important biophysical and technological applications
(for a reference survey, see[15,21]), e.g. semiconductor de-
vices [22,25], tunnel junction in superconductor devices
[23], biological ion channels[24,26], etc. In these cases, the
effect of ANM has a quantum-mechanical origin[22,23,27].

There are several categories of theoretical models for
classical ANM. First, for interacting Brownian particles
ANM was found as a genuine cooperative effect[16]. The
authors of Ref.[17] suggested, on the basis of Ising-type
variants of those models, that at least three cooperating units
are sufficient for ANM. Second, in[15,18] various 2D spatial
geometries have been proposed in which a single Brownian
particle displays ANM. Recently, two interesting basic 1D
models for a single Brownian particle exhibiting ANM were
presented[19,20]. Although the mechanism of ANM in these
1D models is different, there is similarity in some aspects,
notably, switching between different potential configurations
(states) can take place only when the particle passes specific
positions. For example, for the spatially continuous model in
[19] the corresponding positions are the minima of the peri-
odic potential with two minima per period. Note that as a
result of the localized transitions between the different states,
dependence of the stationary current on the switching rate
disappears[19].*Electronic address: ako@audentes.ee
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As the “three-layer” basic diffusion mechanism for ANM
described in[19] is robust enough and can be easily realized
experimentally, we were to apply a similar approach to 1D
models, where the transitions between different potential
configurations are not localized at discrete points, i.e., the
transitions appear rather in finite intervals. It is of interest,
both from theoretical and practical viewpoints, to know
whether such a modification of the basic model can cause
novel unexpected effects.

In this article, we consider one-dimensional overdamped
dynamical systems, where Brownian particles move in a spa-
tially periodic piecewise linear symmetric potential, which
has one minimum per period. The applied force consists of
an additive static force and of a noise term composed of
thermal noise with a temperatureD and a nonequilibrium
three-level colored noise with a switching raten. The three-
level noiseZstd, taking the valuesznP hf ,0 ,−fj, is assumed
to be spatially nonhomogeneous, so that transitions between
the statesz1= f, z2=0 and between the statesz2=0, z3=−f
can take place only in the left half-period and in the right
half-period of the potential, respectively.

Our purpose is to report some interesting phenomena,
which take place in simple one-dimensional systems de-
scribed above, arising as a consequence of interplay between
a nonequilibrium noise, thermal noise, and deterministic
force. On the basis of an exact expression for the current we
have found a number of cooperation effects:(i) a resonant-
like behavior of ANM at intermediate values of the switching
rate; the presence and intensity of ANM can be controlled by
the switching rate and by temperature,(ii ) the existence of a
negative differential resistance,(iii ) for large values of the
switching raten and a low temperatureD the current is, at
some values of the tilting forceF, very sensitive to a small
variation of F—a phenomenon called hypersensitive differ-
ential response(HDR), and in the region of HDR the value
of differential mobility can be controlled by means of ther-
mal noise;(iv) for certain system parameters, there is a finite
interval of the tilting force where the current is very small as
compared to that in the surroundings[the effect of “disjunct
windows” (DW)]. It seems that the behavior mentioned last
is a new anomalous transport phenomenon for Brownian par-
ticles.

We emphasize that to our knowledge such a rich variety
of anomalous transport effects have never been reported be-
fore for an overdamped Brownian particle in a 1D periodic
structure with a simple symmetric potential(with one mini-
mum per period).

It is known [4–8] that the models with the ratchet effect
are characterized by a nonzero current if the tilting force is
absentsF=0d, and, thus, they inevitably involve some kind
of asymmetry. In contrast to that our present model with the
effects of ANM, NDR, and HDR is symmetric forF=0.

The structure of the paper is as follows. In Sec. II we
present the model investigated in this work. A master equa-
tion description of the model is given and a corresponding
exact stationary solution is discussed. In Sec. III we analyze
the behavior of the current. Omitting the rather lengthy ana-
lytical exact solution and referring instead to the representa-
tive results depicted in figures, we will analyze the behavior
of the current at different limits, such as the slow-noise limit,

fast-noise limit, low-temperature case, etc. Section IV con-
tains brief concluding remarks. Some formulas are delegated
to the Appendix.

II. A MODEL WITH A THREE-LEVEL NOISE

We consider overdamped motion of Brownian particles in

a one-dimensional spatially periodic potentialṼ=Ṽsx̃+Ld of

a periodL and barrier heightṼ0=Ṽmax−Ṽmin. The additional

force consists of thermal noisej̃st̃d with a temperatureT, a

colored three-level Markovian noiseZ̃sx̃, t̃d, and an external

static forceF̃. The system is described by the stochastic dif-
ferential equation

k
dX̃

dt̃
= −

dṼsX̃d

dX̃
+ F̃ + j̃st̃d + f̃ Z̃sX̃, t̃d, s1d

wherek is the friction coefficient andf̃ is a constant force.

The thermal fluctuationsj̃st̃d are modeled by a zero-mean
Gaussian white noise with the correlation function

kj̃st1dj̃st2dl=2kkBTdst̃1− t̃2d, wherekB is the Boltzmann con-

stant. The termZ̃sX̃, t̃d represents spatially nonhomogeneous
fluctuations assumed to be a three-level Markovian stochas-
tic process taking the valuesz̃1=−1, z̃2=0, z̃3=1. The prob-

abilitiesWnstd thatZ̃sX̃, t̃d is in the staten at the timet̃ evolve
according to the master equation

d

dt̃
Wnst̃d = o

m=1

3

ŨnmWmst̃d, s2d

where

Ũ =
ñ

21− ã1sx̃d, ã1sx̃d, 0

ã1sx̃d, − 1, ã2sx̃d
0, ã2sx̃d, − ã2sx̃d

2 s3d

andã1sx̃d=Qsx̃−L /2d, ã2sx̃d=QsL /2−x̃d; Qsxd is the Heavi-
side function. By applying a scaling of the form

X =
X̃

L
, Vsxd =

Ṽsx̃d

Ṽ0

, t =
t̃

t̃0
, j =

Lj̃

Ṽ0

, F =
L

Ṽ0

F̃,

f =
L

Ṽ0

f̃ , s4d

we get a dimensionless formulation of the dynamics with the
potentialV with the propertyVsxd=Vsx−1d. By the choice of

t0=kL2/ Ṽ0 the dimensionless friction coefficient turns to
unity. The rescaled noises are given by

n =
kL2ñ

Ṽ0

, a1sxd = QSx −
1

2
D, a2sxd = QS1

2
− xD ,
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D =
kBT

Ṽ0

, s5d

where 2D is the strength of the rescaled zero-mean Gaussian
white noisejstd. For brevity’s sake, from now on we shall
call D temperature. The dimensionless dynamics reads as

dX

dt
= −

dVsXd
dX

+ F + jstd + fZsX,td, s6d

where the rescaled nonequilibrium noiseZsX,td is character-
ized by the transition matrixU of the form

U =
n

21− a1sxd, a1sxd, 0

a1sxd, − 1, a2sxd
0, a2sxd, − a2sxd

2 .

Let us observe that the three-level stochastic processZsX,td
with property (5) is actually independent from the position
variablex in the intervalss0, 1

2
d mod 1 ands 1

2 ,1d mod 1, and
the transition probability per unit timeUnm

sid , i =0,1, n,m
=1,2,3, for aflipping from the statezm into the statezn
factorizes, i.e.,

Unm
sid = Qiszndniszmd, n Þ m,

where indicesi =0 andi =1 denote the intervalss0, 1
2

dmod 1
and s 1

2 ,1dmod 1, respectively;Q0s1d=Q0s0d= 1
2, Q0s−1d=0,

n0s1d=n0s0d=n, n0s−1d=0, Q1s0d=Q1s−1d= 1
2, Q1s1d=0,

n1s0d=n1s−1d=n, n1s1d=0. It means that the processZsX,td
can be presented as the sum of two kangaroo processes
ZsX,td=Z0stdd0,1+Z1stdd1,i [28]. If the kangaroo processes
Z0std andZ1std are statistically independent, which is the case
addressed in the present paper, then the two-dimensional pro-
cesshxstd ,zstdj is Markovian and its joint probability density
Pnsx,td for the position variablexstd and the fluctuation vari-
able zstd obeys the master equation of the form(see Ref.
[28])

]

] t
Pnsx,td = −

]

] x
FShsxd + F + znf − D

]

] x
DPnsx,tdG

+ o
m

UnmPmsx,td, s7d

with m,n=1,2,3; z1=−1, z2=0, z3=1; hsxd=−dVsxd /dx.
More precisely, in the intervals0,1d the master equation(7)
splits up into two differential equations Pisx,td
=sP1i ,P2i ,P3idsi =0,1d, defined in the intervalss0, 1

2
d and

s 1
2 ,1d, respectively.

The stationary currentJ is then evaluated via the current
densities

jnsxd = Shsxd + znf + F − D
]

] x
DPn

ssxd, J = o
n

jnsxd, s8d

wherePn
ssxd is the stationary probability density for the state

sx,znd. It follows from Eq. (7) that the currentJ is constant.
In the stationary case, the total net probability flux between
the statesn=1,2,3must vanish, implying

E
0

1/2

P2
ssxddx=E

0

1/2

P3
ssxddx,

E
1/2

1

P1
ssxddx=E

1/2

1

P2
ssxddx. s9d

To derive an exact formula forJ, we present an analysis of
the system of Eq.(6) for a piecewise linear sawtooth-like
symmetric potential,

Vsxd = H− s2x − 1d, x P s0,1/2d mod 1,

s2x − 1d, x P s1/2,1d mod 1.
s10d

The forcehsxd=−dVsxd /dx being periodic, the stationary dis-
tributionsPn

ssxd as solutions of Eqs.(7) are also periodic and
it suffices to consider the problem in the intervalf0,1d. The
force corresponding to the potential of Eq.(10) is

hsxd = Hh0: = 2, x P s0,1/2d,

h1: = − 2, x P s1/2,1d.
s11d

A schematic representation on the three configurations as-
sumed by the “net potentials”Vnsxd=Vsxd−Fx−znfx associ-
ated with the right-hand side of Eq.(6) is shown in Fig. 1.
Regarding the symmetry of the dynamical system(6), we
notice thatJs−Fd=−JsFd. Thus, we may confine ourselves to
the caseFù0. Obviously, forF=0 the system is effectively
isotropic and no current can occur.

As the forcehsxd is piecewisely constant Eq.(7) splits up
into two linear differential equations with constant coeffi-
cients for the two vector functionsPi

ssxd=sP1i
s ,P2i

s ,P3i
s dsi

=0,1d defined on the intervalss0, 1
2

d and s 1
2 ,1d, respectively.

The solution reads as

FIG. 1. Schematic representation of different states and their
transitions in the model(6) with the sawtooth-like potential(10) at
low temperatures. The lines depict the net potentialsVnsxd=Vsxd
−Fx−znfx with z1=−1, z2=0, andz3=1. Unbiased transitions with
a switching raten can take place between the discrete states, but
only at specific positions, namely, in the intervalxP s0, 1

2
d, modulo

1 betweenV2 and V3, and in the intervalxP s 1
2 ,1d modulo 1 be-

tweenV2 andV1. All quantities are dimensionless with scaling by
Eqs. (4) and (5). (a) The case ofF=1, f =4. (b) The case ofF
=1.6, f =3.
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Pni
s = Ani0 + o

k=1

4

CikAnik expFliksFdx
D

G , s12d

whereAni0 andAnik are given by

Ani0 = Ci0 + dn,2i+1
J − 3Ci0shi + Fd

li1sFd
, Ani1 = dn,2i+1,

A2i+1 i j = 0, A2i j = 1,

A3−2i i j = 1 +
2li jsFd

Dn
fhi + F − li jsFdg, j = 2,3,4,

Ci0, Cik are constants of integration,l01sFd=−l11s−Fd=2
+F− f, and hl0ksFd=−l1ks−Fd ,k=2,3,4j is the set of roots
of the algebraic equation

lsFdflsFd − s2 + F + fdgflsFd − s2 + Fdg

− nDFlsFd − S2 + F +
f

2
DG = 0. s13d

Ten independent conditions for the ten constants of integra-
tion Cik ,k=0,1,2,3,4, and for theprobability currentJ can
be determined at the points of discontinuity, by requiring
continuity and periodicity for the quantitiesPi

ssxd and jnisxd,
i.e.,

Pn0
s S1

2
D = Pn1

s S1

2
D, Pn0

s s0d = Pn1
s s1d,

jn0S1

2
D = jn1S1

2
D, jn0s0d = jn1s1d, n = 1,2,3. s14d

As it follows from Eq.(7) thatJ=const[see also Eq.(8)], the
system of linear algrebaic equations(14) contains only ten
linearly independent equations. By including an eleventh
(normalization) condition,

o
n=1

3 E
0

1

Pn
ssxddx= 1, s15d

a complete set of conditions is obtained for the ten constants
of integration and for the probability currentJ. This proce-
dure leads to an inhomogeneous set of eleven linear alge-
braic equations. Now,J can be expressed as a quotient of two
determinants of the eleventh degree. The exact formula, be-
ing complex and cumbersome, will be presented in the Ap-
pendix[Eq. (A1)]. It will be used to find(i) the dependence
of the currentJ on the tilting forceF and the dependence of
the mobility m=dJ/dF on the switching raten, which are
displayed in Fig. 2(a) and Fig. 4, respectively, and(ii ) the
asymptotic limits of the current at a low temperature, fast-
noise, and adiabatic noise. The behavior ofJ at different
system parameters regimes will be considered in Sec. III. All
numerical calculations are performed by using the software
MATHEMATICA 4.1.

III. RESULTS

A. Anomalous resistance

The quantities of central interest are the average particle
current J and its response to an applied forceF, i.e., the
differential mobility atF=F0,

umuF=F0
= UdJsFd

dF
U

F=F0

. s16d

In the case of a small applied force,

m0 = UdJsFd
dF

U
F=0

s17d

will be called mobility.
For the general case, the exact equation(A1) for the cur-

rent J enables us to establish a number of effects character-
izing anomalous behavior of the resistance(or mobility).

Later Fig. 2(a) illustrates the behavior of the currentJ as
a function of the tilting forceF in the region of anomalous
resistance. It appears that the curves are highly nonlinear. For
curves(2) and(3), the phenomenon of absolute negative mo-
bility occurs: the particle moves in the direction opposite to a
small external forceF. Moreover, all curves exhibit intervals
of F where particle speed decreases as the applied drive is
increased—an effect that is termed negative differential re-
sistance. In the case of curve(3) two additional effects occur.
First, one can see a hypersensitive response—the jumps of
the current atF=1 andF<2. Second, at a low temperature
and a large switching raten the current exhibits characteristic
“disjunct windows” of the tilting force[2,F,3,5 for curve
(3)], where the value of the current is very small.

FIG. 2. The currentJ vs the applied forceF in the region of
anomalous mobility.(a) The general case[Eq. (A1)]. Dashed line
(1): D=10−2, n=10−2, and f =1.9. Dotted line (2): D=10−2, n
=10−2, andf =3. Solid line(3): D=10−7, n=103, andf =3. Note that
in the cases of curves(2) and (3) the phenomenon of absolute
negative mobility occurs.(b) The case of an adiabatic limit[Eqs.
(A3)–(A7)]. Here the temperatureD is zero and the curves corre-
spond to(1) f =1.5, (2) f =3, (3) f =5, and(4) f =7. All quantities
are dimensionless with scaling by Eqs.(4) and (5).
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B. The adiabatic limit in the case of low temperatures

In this section we examine a simple, yet physically impor-
tant case of the adiabatic limit at low temperatures that cap-
tures some features of the general system, including absolute
negative mobility and negative differential resistance. We
start from the asymptotic formulas(A3)–(A7) for the current
J reproduced in the Appendix. In Fig. 2(b) we plot a series of
curves ofJ vs the tilting forceF at various noise amplitudes
f, showing that four different types of the graphsJsFd
emerge. These four types ofJsFd correspond to four charac-
teristic regions for the parameterf: f ,2,2, f ,4,4, f ,6,
and f .6. (i) If f ,2, the current is zero forFø2− f and at
the pointF=2; for 2−f ,F,2 the positive current exhibits
a bell-shaped extremum, and ifF.2, thenJ increases mono-
tonically from zero.(ii ) In the case of 2, f ,4, the current
exhibits a reversal of the direction atF= f −2, if F=2, then
J=0; the current reaches two local minima and a local maxi-
mum at a finiteF. (iii ) For 4, f ,6, the behavior ofJ is
characterized by current reversals atF= f −2 and by one lo-
cal extremum(minimum); no negative differential resistance
for a positive current occurs.(iv) If f .6, the current behaves
similarly as in the case of(ii ); however, the zeros ofJ appear
at the values of the tilting forceF=f2s2+ fdg1/2 andF= f −2.
Note that negative differential resistance for a positive cur-
rent disappears only in the case of 4, f ,6, while absolute
negative mobility is absent only in the case off ,2. The
existence of four characteristic regions forf and the corre-
sponding behavior ofJsFd are closely related to configura-
tions of the net potentialsVnsxd=Vsxd−Fx−znfx associated
with the right-hand side of Eq.(6). For example, in case
f ,2 and 0,F,2− f, the net potentialsVnsxd for all states
n=1,2,3 of thenonequilibrium noiseZ have minima atx
=1/2. Hence, at a zero temperature in a stationary state the
particles are locked in the potential minima and there is no
current.

Let us note that the sufficient and necessary condition
f .2 for the existence of absolute negative mobility has a
distinct physical meaning: forf .2 and F, f −2, the net
potentialsVnsxd in the statesn=1,3 aremonotonous func-
tions [also see Fig. 1(a)] and hence in the staten=1 the
particles will move in the negative direction. In this case,
absolute negative mobility is possible and can be physically
understood. Let us take a closer look at the latter statement.
The adiabatic limit occurs whenn→0. In the low frequency
domain there is, in each of the three states, enough time for
the probability distribution to relax to and spend most of the
time in the stationary probability distribution belonging to
that state. For a sufficiently low temperatureD!1 the prob-
ability distribution in then=2 state can be approximated by
the Boltzmann distribution,

P2
ssxd = C2 expF−

V2sxd
D

G , s18d

where C2 is the appropriate normalization constant. In the
staten=2 the currentJ2 is zero. The currentJ3 in the state
n=3 and the currentJ1 in the staten=1 are

J1 = 2E
0

1/2

P1
ssxds2 − f + Fddx= − 2E

1/2

1

P1
ssxdsf + 2 −Fddx,

s19d

J3 = 2E
0

1/2

P3
ssxds2 + f + Fddx= 2E

1/2

1

P3
ssxdsf + F − 2ddx.

s20d

Equations(19) and (20) are consistent with the fact that the
flux of particles is continuous.

For the total current we have

J = 2fp11s2 − f + Fd + p31s2 + f + Fdg

= 2fp32sf + F − 2d − p12sf + 2 −Fdg, s21d

wherepn1;e0
1/2 Pn

ssxddx, pn2;e1/2
1 Pn

ssxddx.
From Eq.(18) we obtain

p22 = p21
F + 2

2 − F
, F , 2, s22d

i.e., upon the application of a tilting forceF.0 the particles
will preferentially reside on the right-hand side of the net
potential V2sxd, facilitating entry into the staten=1 where
the motion is biased into the negative direction. Now, using
the stationarity conditionsp21=p31, p12=p22 [see Eq.(9)],
and the normalization condition(15) we get the formula

J = −
fFfsf − 2d2 − F2g

sf − 2ds3f − 2d − F2 , 0, s23d

with f .2 and F,minhf −2,2j. Thus, we have obtained a
result of the Appendix, namely, Eq.(A6). The effect of ANM
appears because of a regulative role of the staten=2. The
crucial observation now is that the application of a small
tilting force F along thex axis will favor the concentration of
particles on the right-hand side of the net potentialV2sxd that
is characterized by a flatter slope than the left-hand side. The
negative current happens because of the transitions between
the statesn=2 and n=1; hence, negative mobility can be
expected if this effect is larger than the linear effect of a
direct response to the tilting force. Note that an analogous
procedure can be repeated in a straightforward way for all six
different net potentialVnsxd configurations that appear by the
variation of the parametersf and F. The corresponding re-
sults coincide with the formulas(A3)–(A7).

Next we shall consider the phenomenon of negative dif-
ferential resistance(NDR) for a positive current. In the case
of 2, f ,4 and f −2,F,2 the corresponding net potential
Vnsxd configuration is shown in Fig. 1(b). At a low tempera-
ture, D→0, a particle cannot move freely along the poten-
tials V1 and V2. However, if switching is allowed between
the potentialsVn, n=1,2,3, theparticle will move downhill
along the potentialV3 and the total current is positive. The
stationary probability densitiesP1

ssxd andP2
ssxd for the states

n=1,2 aredetermined by the Boltzmann distributions[also
see Eq.(18)]. The physical mechanism for NDR is evident
from the considerations mentioned above at Eq.(23). As the
tilting force F increases, the slope of the right-hand side of
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the potentialV2sxd decreases and the fraction of particles
locked in the staten=1 and on the right-hand side of the
potentialV2 increases. Consequently, the fraction of the par-
ticles in the staten=3, sp31+p32d,s2−Fd, decreases and the
total currentJsFd=2p31s2+ f +Fd versusF is a decreasing
function, at least in the case whenF is great enoughsF
<2d. The corresponding formula forJ is represented in the
Appendix [Eq. (A3)]. Now, from Eq. (A3) the differential
resistance atF=2 can be derived:

umuF=2 = −
s16 − f2d
2s8 − fd

, 0, 2, f , 4.

If f .2, the phenomenon of NDR different from those con-
sidered above can be observed in the tilting force interval,

0 , F , hsf − 2df2s2f − 1d − ffs13f − 8dg1/2gj1/2.

In this case NDR is associated with ANM and the current is
negative[see Fig. 2(b)].

C. Absolute negative mobility

Next we will discuss the effect of absolute negative mo-
bility. At a long-correlation-time limitn→0, Eqs. (7) for
P1

ssxd, P2
ssxd, andP3

ssxd are decoupled and the total current is
given by the average of each current for the corresponding
potential configurations. The result is represented in the Ap-
pendix[Eq. (A2)]. In this case, our analytical solution for the
mobility (17) of the system(6)reads as

m0 =
s2 − fdh2b − 3 − f + aff + 4s2 + fdg/s1 − 2bdgj

af3f − 2 + 2s6 − fdbg
,

s24d

where

a = F2D sinhS 1

2D
DG2

,

b =
4Dses2−f/2Dd − 1ds1 − e−s2+f/2Ddd

sf2 − 4ds1 − e−f/Dd
,

g =
2

f2 − 4
+ bF 2f

f2 − 4
+

1 + e−f/D

2Ds1 − e−f/DdG .

In the high temperature limitD@1, the mobility tends to 1
and the system does not exhibit ANM. In the case of zero
temperature,D=0, one finds from Eq.(24) that in the as-
sumptionf .2 the mobility equals

m0 =
− fsf − 2d

3f − 2
, s25d

supporting ANM in agreement with Figs. 2 and 3. Iff ,2,
we can see thatm0 tends to zero asD→0. This result is
consistent with the physical intuition that at deterministic
stationary states(minima of potentials) the probability den-
sities Pn

ssxd are d distributed: the random variableZ takes
valueszn=1,0,−1 for asufficiently long time to allow the
deterministic stationary state to be formed. Figure 3 shows

the mobility m0 as a function of the temperatureD for four
different values of the noise amplitudef in the case of a low
switching rate limit. In this figure, one can also observe ab-
solute negative mobility at small and intermediate tempera-
tures, which apparently gets more and more pronounced as
the noise amplitudef .2 increases. The tendency apparent in
Fig. 3, namely, an increase of the critical temperatureDc (the
temperature at which the phenomenon of ANM disappears)
as the amplitudef grows, also takes place in the case of large
f, e.g., if f .6. At sufficiently large values off, f @2, the
formulas for the leading-order terms of the mobilitym0 and
of the critical temperature are

m0 <
1

a
F1 −

f

3
sa − 1dG, D ! f ; Dc <

1

6
Îf . s26d

In Fig. 3 we can see that the asymptotic formula(26) for Dc
is in agreement with the exact result forf =6. It is remarkable
that the phenomenon of ANM occurs also at high tempera-
tures, if only the noise amplitudef is large enough. The
physical mechanism appropriate to generate results(26) is
analogous to those considered in Sec. III B. The key-factor is
the stationary probability distributionP2

ssxd in the staten
=2. However, as the temperature is relatively high, causing
significant diffusion over the potential barrier, the stationary
probability densityP2

ssxd is not determined by the Boltzmann
distribution and in the staten=2 the fractional currentJ2
Þ0. Instead of Eq.(18), the stationary probability density is
given as

P2
ssxd = Ce−V2sxd/DE

x

1+x

eV2syd/Ddy, s27d

whereC is the appropriate normalization constant.
Focusing on the small tilting force,F→0, we obtain that

p21<p22h1−Ff1−s1/adgj and J<s1/3adF+2fp32sf +F−2d
−p12sf +2−Fdg, which, by virtue of Eqs.(9), (15), (19), and
(20), yields the expression(26). The destructive influence of

FIG. 3. The mobilitym0 vs temperatureD at various noise am-
plitudes f in the case of an adiabatic limit[Eq. (24)]. Note that in
the case off ,2 the mobility is positive for all values ofD.0. At
large values of the temperature,D.1,the mobilitym0 saturates to
the value 1. The dots were computed by means of the exact equa-
tion (A1) with f =6, n=10−6. All quantities are dimensionless with
scaling by Eqs.(4) and (5).
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temperature for ANM is twofold. First, the thermal diffusion
generates a positive currentJ2<s1/3adF in the staten=2
and, second, in agreement with physical intuition, the asym-
metry of particle distribution 1−sp21/p22d=Ff1−s1/adg de-

creases as temperatureD grows.
Figure 4 shows a plot ofm0 as a function of the switching

raten at various temperatures. For low temperatures,D→0,
and f .2, the mobility is approximately given by

m0 = −
nsf − 2dsf + 4dh16ãs2 + fd3 + nsã + 1ds4 + fdff2 + 4f + 8gj

8ãsf + 2d2f3nfsf + 4d − 32ãsf − 2dg
, s28d

with

ã = expF−
nsf + 4d
8sf + 2dG − 1,

[also see Eq.(A9)]. In this case the mobility is always nega-
tive and m0 decreases monotonically fromm0=−fsf
−2d / s3f −2d to the value

m0 = −
2sf2 − 4d

3f
, s29d

as the switching rate grows.
It is remarkable that the absolute value ofm0 increases as

n→`, nD!1. This phenomenon can be physically under-
stood, taking into account that the fraction of particles effec-
tively locked in the potential minimum of the staten=2
reads as

r = −
8ãsf − 2dsf + 4d

3nfs4 + fd − 32ãsf − 2d
. s30d

More precisely, forn=2, the parameterr is the probability
that the position of particles coincides with the deterministic
stationary statex=1/2 (a stationary stable point in the ab-
sence of noise). At the adiabatic limitn→0 the parameter
r=sf −2d / s3f −2d. For n→` we get r<8sf −2d /3fn; thus
the locked fraction of particles decays algebraically to zero
in n−1.

Two important asymptotic regimes occur in theDÞ0
situation: first, the regime of low diffusion levelsDn!1 for
which the characteristic distances of thermal diffusionÎDtc
are much smaller as the typical deterministic distances of the
driven particles during the noise correlation timetc=1/n,
and, second, the regimeDn@1, dominated by thermal diffu-
sion. In the regime of low diffusion the temperature is small
enough,D,Dc<Îf /6, for the phenomenon of ANM to ap-
pear, contrary to the case ofDn@1, where the mobility is
positive. At the fast-noise limit,n→`, Dn→`, the mobility
m0 can be easily found from the asymptotic formula(A8)
represented in the Appendix. Finally, a most salient interme-
diate regime occurs in which the mobility exhibits a
resonant-like enhancement at finite values ofn (also see Fig.
4). For example, in Fig. 4 the curvem0snd with D=0.01
shows an amplification of ANM atn=18.

D. Hypersensitive differential response

Next we will discuss both the effect of “disjunct win-
dows” (DW) and the effect of hypersensitive differential re-
sponse(HDR). Both effects appear at large values of the
switching raten and low values of the temperatureD. Figure
5 exhibits the behavior of the currentJ versus the tilting
force F in the region of an anomalous differential response.
Here the curve(5) demonstrates the DW effect. As already
mentioned, at large values ofn the current exhibits a charac-
teristic disjunct zone of the tilting force, 2
+sf /2d.F.maxh2, f −2j, in which the current is very
small. The necessary conditions for the existence of the DW
effect are the regime of a small diffusionDn!1 and a large
n. Hence at a low temperature,D→0, the DW effect can
analytically be examined by Eq.(A10). In this case for 2
+sf /2d.F.maxh2, f −2j the current is exponentially small,
J,ne−nd with d−a constant.

As the diffusion is negligible the physical mechanism for
DW is simple. For the described interval ofF the net poten-
tial V1sxd exhibits a minimum and the potentialsV2sxd, V3sxd
are monotonic functions. If the correlation time of the noise
tc=1/n is small enough, a particle in the staten=2 cannot,
before switching to the staten=1, move to the next spatial
period and, consequently, in the stationary state all particles
are concentrated at the potential wellV1sxd and on the right-
hand side of the potentialV2sxd. This is because the absolute
value of the deterministic velocity of particles on the right-
hand side ofV1sxd is greater than the velocity on the right-
hand side ofV2sxd. It is obvious that the total currentJ tends

FIG. 4. The mobilitym0 vs the switching raten at various tem-
peraturesD and f =3. The curves withD=0.1 and withD=0.01 are
computed from the exact formula(A1) for the currentJ. The line
with D=0 corresponds to the asymptotic equation(28). All quanti-
ties are dimensionless with scaling by Eqs.(4) and (5).
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to zero asn→`, since the trapping probability inV1sxd and
V2sxd tends to 1.

The described scheme is valid only for low temperatures.
Otherwise, a particle is able to pass potential barriers in both
directions by a thermally activated escape. However, it pre-
dominantly moves to the right and a positive current occurs.

In Fig. 5, the curve(5) demonstrates also the phenomenon
of HDR, i.e. jumps of the current with a large derivative for
some values of the tilting forceF, at F=2. The jump ofJ at
F=2 can estimated with the help of the following physical
considerations. Asn→`, nD!1 andD→0, the diffusion is
very small and the actual three-level net potential configura-
tion is equivalent to a two-level average net potential con-
figuration Vavg1 and Vavg2. The potentialVavg1 is character-
ized by the effective forces 2+sf /2d+F and f +F−2 in the
left-hand and right-hand sawtooth sides, respectively. The
net potentialVavg2 has a local minimum atx=1/2 with the
corresponding effective forcesF+2−f andF−2−sf /2d. Due
to very small diffusion the fraction of particles in the poten-
tial well Vavg2 is negligible and this leads to the circumstance
that the formation of the current is determined byVavg1. So
the currentJ can be found, by using the continuity of particle
flux and the normalization condition, from the equations

J = 2p2sf + F − 2d, p1S2 + F +
f

2
D = p2sf + F − 2d,

p1 + p2 = 1, s31d

wherep1 andp2 are the stationary probabilities that a particle
is located in the intervalsxP s0,1/2d, and xP s1/2,1d, re-
spectively. Fom Eqs.(31) we obtain that JuF=2−«=2fsf
+8d / s3f +8d+Os«d and one finds for the jump of the current:

DJuF=2 = JuF=2+« − JuF=2−« = −
2fsf + 8d

3f + 8
, s32d

with «→0. Note that this result can be obtained also straight-
forwardly from Eq.(A11). Moreover, from Eq.(A11) it can
be easily shown that

muF=2 < −
ns4 − fds8 + fd

32s8 − fd
, s33d

with 2, f ,4, D→0. An extreme sensitivity of the differen-
tial negative mobilitymuF=2 to the switching raten can be
seen from the factorn in Eq. (33)—the absolute value of the
mobility muF=2 increases unboundedly asn→`. Further-
more, in the case considered here(2, f ,4, Dn!1, D→0)
the effect of HDR also occurs atF= f −2 [Fig. 2(a)]. Accord-
ing to Eq. (A11) for F→ f −2, the formula for the leading-
order term of the differential mobility reads as

muF=f−2 =
3ns4 − fd

8f
.

At the fast-noise limit,n→`, the corresponding jump of the
current can be estimated by the equation

DJuF=f−2 =
12fsf − 2d

7f − 8
.

To illustrate the phenomenon of HDR in the “strong dif-
fusion” domain,Dn@1, we are restricted to the low tem-
perature case,D!1. At the fast-noise limit,n→`, one finds
from Eq. (A8) that the differential mobilitymuF=2+sf/2d be-
haves asymptotically as

muF=2+f/2 < −
fsf + 8d

2Ds3f + 8d2, 0 , f , 8. s34d

It is obvious that the absolute value of the differential mo-
bility muF=2+sf/2d increases unboundedly asD→0. The corre-
sponding jump of the current isDJuF=2+sf/2d=−4fs8+ fd / sf
+4ds3f +4d. The dependence of the currentJsFd on the tilting
force F for a fixed switching raten=1012, a fixed tempera-
ture D=10−6, and f =3 is shown in Fig. 5 as curve(2). We
can see that the asymptotic formula(A8) is in excellent
agreement with the exact results. According to numerical cal-
culations from the exact equations(12)–(15) we emphasize
that the effect of HDR atF=2+sf /2d is extremely pro-
nounced in an intermediate regime,s1/Dd,n→`, with the
current picking up from zero[also see curve(1) in Fig. 5]. It
is remarkable that in the case of fast noise the value of the
tilting force F=2+sf /2d corresponds to the critical value of
F at which the average net potentials configuration changes.

The appearance of HDR is not confined to the cases de-
scribed above. Ifn→` andD→0, the phenomenon of HDR
can occur, depending on particular values of the parameters
nD and f, atF=2+sf /2d, 2, f −2. For example, in the case of
2, f ,8, Dn@1, we have muF=f−2< fsf −2d /6Ds2f −1d2.
Note that all these values ofF correspond to a change in the
net potentials configuration.

IV. CONCLUDING REMARKS

Above, we have presented some exact and asymptotical
results for the dynamics of an overdamped Brownian particle
in a periodic, symmetric, one-dimensional sawtooth potential
landscape subjected to a static tilting force and to both ther-
mal noise and spatially nonhomogeneous three-level colored

FIG. 5. The currentJ vs applied forceF in the region of nega-
tive differential resistance. The curves are computed from the exact
equation(A1) at f =3. Solid line(1): D=3310−9, n=108. Solid line
with filled dots(2): D=10−6, n=1012. Dotted line(3): D=5310−3,
n=109. Dashed line(4): D=10−5, n=103. Dashed-dotted line(5):
D=3310−9, n=104. The filled dots were computed by means of the
asymptotic formula(A8). Note the hypersensitive response(jumps)
of the current in the cases of curves(1), (2), and(5). All quantities
are dimensionless with scaling by Eqs.(4) and (5).
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noise. A major virtue of the proposed model is that an inter-
play of three-level colored and thermal noises in tilted ratch-
ets with simple symmetric sawtooth potentials can generate a
rich variety of cooperation effects, namely, absolute negative
mobility (ANM ), negative differential resistance(NDR), hy-
persensitive differential response(HDR), and the phenom-
enon of “disjunct windows”(DW) for the tilting force.

For both slow and fast fluctuating forces, and for low
temperatures, we have presented analytical approximations
that agree with the exact numerical results. One of our major
results is a resonant-like enhancement of absolute negative
mobility at intermediate values of the switching rate of non-
equilibrium noise (also see Fig. 4). Two circumstances
should be pointed out.(i) A resonant-like behavior can occur
in a system parameters domain where the characteristic dis-
tance of thermal diffusionÎD /n is comparable with typical
deterministic distances for the driven particles during the
noise correlation time.(ii ) There is an upper limit tempera-
ture Dc beyond which the phenomenon of ANM disappears.
Notably, at increasing the noise amplitudef the critical tem-
peratureDc grows asDc,Îf, [see Eq.(26)]. It is obvious
that the presence and intensity of ANM can be controlled by
a thermal noise(also see Fig. 3). The advantage of this
model is that the control parameter is temperature, which can
easily be varied in experiments. Moreover, as in Eq.(5) the
friction coefficientk is absorbed into the time scale, so, in
the original(unscaled) set-up, the particles of different fric-
tion coefficients are controlled by different switching rates.
According to the suggestions in[4,7,8,29], this can lead to an
efficient mechanism for the separation of different types of
particles by exploiting the sensitive dependence of the
current-load characteristics on the switching rate(also see
Fig. 4 and Ref.[18]).

The phenomenon of ANM in systems similar to ours have
been studied in[19]. However, in contrast to ours, in those
models the authors choose a symmetric potentialVsxd with
two minima per period. Perhaps the most fundamental dif-
ference is that in the models of[19] unbiased transitions can
take place between the discrete states only at the minima of
potentials. As a consequence the dependence of the current
on the switching rate disappears.

Our another major result is establishing the effects of both
HDR and DW at large values of the switching raten and low
values of the temperatureD [also see Fig. 5 and Eqs.(33)
and(34)]. We emphasize that our mechanism of HDR is of a
qualitatively different nature from a recently found effect,
where a noise-induced enhancement of the current of Brown-
ian particles in a tilted ratchet system has also been estab-
lished [13,14]. In the mechanism reported here hypersensi-
tivity is achieved by a combined influence of fast
nonequilibrium noise and a tilt-force-induced change of the
net potentials configuration. It should be pointed out that in
the present model the effect of HDR is pronounced in the
case of a fast switching of thenonequilibrium noise, while in
the models of Refs.[13,14] the hypersensitive transport is
generated by low or moderate values of the switching rate.

It is quite remarkable that the results of HDR seem to be
applicable for amplifying adiabatic time-dependent signals
vstd, i.e., signals of much longer periods than the character-
istic time of establishing a stationary distribution, even in the

case of a small input signal-to-noise ratiouvstdu /ÎD!1. For
example, in the case described by the formula(34), i.e., the
tilting force F=2+1

2 f +vstd, the system may be able to am-
plify an ultrasmall deterministic ac signalvstd up to the
value of the order of unity(cf. [12,13]). This conjecture pre-
sents an objective that is worthwhile to be addressed in
greater detail in the future.

Surprisingly enough, at a low temperature and a large
switching rate,Dn!1, the current is very small in the finite
interval of the tilting force, 2+12 f .F.maxh2, f −2j. This
novel feature for a Brownian particle is, so far, mainly of
theoretical interest while applications are not clearly identi-
fiable yet.

Finally, we believe that the model discussed here is par-
ticularly suitable for an experimental realization along the
lines described in Ref.[19], e.g., for particles suspended in a
hydrodynamic flow.
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APPENDIX: FORMULAS FOR THE CURRENT

Here the exact formula for the currentJ and some
asymptotic formulas following from Eqs.(11)–(15) will be
represented.

1. The general case

From Eqs.(11)–(15) one can conclude that the currentJ is
given by

J =
detfBlrs1 − dr,2d + dl,11dr,2g

detsBlrd
, sA1d

where the matrixsBlrd , l ,r =1, . . . ,11 is defined as follows:

Bn+3 2= Bn2 =
dn,1

F + 2 − f
−

dn,3

F + f − 2
,

Bn+3 2i+1 = Bn2i+1 = 1 − 3dn,2i+1
hi + F

hi + F + znf
,

Bn+6 2= dn,1 − dn,3,

Bn+6 2i+1 = sF + hi + znfdBn2i+1,

B10 2= 1,B10 2i+1 = shi + F − fdB1 2i+1,

B11 2=
F

F2 − sf − 2d2,B11 1= −
3f

2s2 + F − fd
,

B11 3= −
3f

2sF − 2 + fd
,
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Bn k+3+4i = Anik expFliksFd
2D

G ,

Bn+3 k+3+4i = Anik expFliksFd
D

di,1G ,

Bn+6 k+3+4i = fhi + F + znf − liksFdgBn k+3+4i ,

B10 k+3+4i = fhi + F − f − liksFdgB1 k+3+4i ,

B11 k+3+4i =
D

liksFdon=1

3

sBn k+3+4i − Bn+3 k+3+4id,

with n=1,2,3; i =0,1; k=1,2,3,4;h0=2, h1=−2, z1=−1,
z2=0, z3=1, and the quantitiesAnik, liksFd are the same as in
Eq. (12).

2. The adiabatic limit

At the adiabatic limitn→0 the form of the leading term
of the stationary current is

J =
2fF2 − 4 +BsFd + Bs− Fdg

4fF − 4As0,Fdg + CsFd − Cs− Fd
, sA2d

where

BsFd = sF + 2dsF − 2 − fd
1 − 2As0,Fd
1 − 2Asf,Fd

,

CsFd = BsFd
1 + 2Asf,Fd

2 + F − f
,

Asf,Fd =
4Dhcoshs1/Dd − coshfsf − Fd/2Dgj

fsf − Fd2 − 4gsinhfsf − Fd/2Dg
.

In the case of low temperature,D→0, the Equation(A2)
reduces to more simple formulas. Three characteristic re-
gions can be discerned for the parameterf.

(i) If f ,2, then there is no current asF,2− f, J=0. For
2.F.2− f we have

J =
s2 + f + Fds2 − FdfF2 − sf − 2d2g

16f − s4 − Fdff2 + 4 −F2g
. sA3d

If 2 ,F, f +2, then

J =
sf + 2F + 4dsF − 2dfF2 − sf − 2d2g
2hFfF2 − sf − 2d2g + F2 + f2 − 4j

. sA4d

For F. f +2 the following formula is valid:

J =
s3F2 − 4f − 12dfF2 − sf − 2d2g

Ff8f + 3sF2 − f2 − 4dg
. sA5d

(ii ) In the case of 2, f ,4 andF, f −2, the currentJ can
be given as

J = −
fFfsf − 2d2 − F2g

sf − 2ds3f − 2d − F2 . sA6d

If F. f −2, then the behavior ofJ is determined by Eqs.
sA3d–sA5d.

(iii ) For f .4 and 2,F, f −2, one finds from Eq.(A2)
that

J =
2fF2 − sf − 2d2gfF2 − 2sf + 2dg

Ff3sF2 − f2 − 4d + 8fg
. sA7d

In the intervals 0,F,2 and f −2,F,` the form of J is
given by Eq.sA6d and by Eqs.sA4d and sA5d, respectively.

3. The fast-noise limit

In the fast-noise limit, we allown to become large,n
→`, holding all other parameters fixed. Thus, ifnD→`, in
the largen limit the current can be given as

J =
fF2 − sf − 2d2gfs4 + fd2 − 4F2gfÃsFd − Ãs− Fdg

24Df8F2 − sf − 2dsf2 − 16dg + fB̃sFd + B̃s− FdgfF2 − sf − 2d2gfs4 + fd2 − 4F2g
, sA8d

where

ÃsFd = s2 − Fdhsf − 2 −FdasFd − ff + 2s2 + FdgbsFdj,

with

asFd = FexpS2 − f + F

2D
D − 1G−1

,bsFd = FexpS2s2 + Fd + f

4D
D − 1G−1

,

and

B̃sFd = sf + 2FdbsFd − sf − FdasFd.
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4. The zero-temperature case

In the asymptotic limit of low temperature,D→0, we find that forF,minh2, f −2j, f .2, the current behaves asymptoti-
cally as

J =
2nfs4 + fd2 − 4F2gfãsFds4 + f + 2Fdsf − 2 +Fd − ãs− Fds4 + f − 2Fdsf − 2 −Fdg

nfs4 + fd2 − 4F2gfãsFds3f + 4Fd + ãs− Fds3f − 4Fdg − 16ãsFdãs− Fdsf + 4d
, sA9d

where

ãsFd = s2 − Fd2sf − 2 −FdFexpS − ns4 + f − 2Fd
4s2 − Fds2 + f − FdD − 1G .

For f +2.F.maxh2, f −2j and f .2, the formula for the leading-order term of the current is

J =
2nfs4 + fd2 − 4F2gf4 + f − 2FgfF2 − sf − 2d2g

ns2 + F − fds4 + f − 2Fdf8Fs2 − f − Fd + 3fs2 + f + Fdg + 4s2 + Fds8 − fdb̃sFd
, sA10d

with

b̃sFd =
s2 + f − Fd2sf − 2 +Fd

s2 − Fd2sf − 2 −Fd
ãsFd.

If 2 , f ,4 and f −2,F,2, then

J =
2ns2 − Fds4 + f + 2Fd2fF2 − sf − 2d2g

ns2 − Fds4F + 3fdsF + 2 − fds4 + f + 2Fd − 4ãs− FdfFsf + 16d − f2 − 2f + 32g
. sA11d

We note that formulas(A9)–(A11) can also be applied in the case of the fast-noise limit,n→`, by the assumption thatnD
!minhsF−2d2,s2+ f −Fd2j.
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