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Anomalous mobility of Brownian particles in a tilted symmetric sawtooth potential
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Overdamped motion of Brownian particles in a 1D periodic system with a simple symmetric sawtooth
potential subjected to both unbiased thermal noise and spatially nonhomogeneous three-level colored noise is
considered analytically. Upon application of a tilting force the particles exhibit anomalous transport properties,
namely, absolute negative mobility, negative differential mobility, and the phenomenon of hypersensitive
differential response. It is established that the mobilitifferential mobility includedl depends nonmonotoni-
cally on the parameterswitching rate, amplitude, and temperajuwénonequilibrium and thermal noises. The
necessary conditions for various anomalous transport properties are found.
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[. INTRODUCTION nal [12]. Afterwards, a related phenomenon such as noise-
induced hypersensitive transport was found in some other
ystems with multiplicative colored noise. It was shown that

n such a system a macroscopic fl(ourreny of matter ap-
pears under the influence of an ultrasmall dc driihg,14.
A characteristic feature of models with ANM is that upon

The idea that noise, via its interaction with the nonlinear-
ity of the system, can give counterintuitive results, has lea
to many important discoveries: stochastic resonafide
resonant activatiofi2], nonequilibrium phase transitioi$,
and stochastic ratchet8rownian motor$ [4-11, t0 name  yho anpjication of an external static forée these models
but a few. L respond with a current that always runs in the direction op-

Recently, noise-induced anomalous transport phenomer‘l?osi,[e to that of the forceif the force is small enough
of Brownian particles in nonlinear periodic structures have[15—23]. Notably, forF=0 no current appears due to spatial
'symmetry of the system. The effect of ANM is distinct from
the phenomenon of negative differential mobiliyr resis-
tance which is, for a sufficiently largé-, characterized by a

ecrease of the current as the driving foFeéncreases, but
he system does not exhibit AN24]. Devices that display
both ANM and negative differential resistance exist and they
have important biophysical and technological applications
(for a reference survey, s¢&5,21]), e.g. semiconductor de-
vices [22,25, tunnel junction in superconductor devices
[23], biological ion channel§24,2§, etc. In these cases, the

, } effect of ANM has a quantum-mechanical orig2®,23,27.
Beyond that, it was suggested that the ratchet mechanism can There are several categories of theoretical models for

be used for obtaining efficient separation methods of NanOg|5ssical ANM. First. for interacting Brownian particles
scale objects, e.g., DNA molecules, proteins, viruses, eteANM was found as e{ genuine cooperative eff&t]. The
[4,7.,8. To.date, the feasibility .of particle transport by man- authors of Ref[17] suggested, on the basis of Ising-type
made devices has been experlmgntally demonstrated for S&ariants of those models, that at least three cooperating units
eral ratchet type¢8-10. Many different forms of ratchet oo o tficient for ANM. Second, ifL5,18 various 2D spatial
systems are possible. The classification of different types 03eometries have been proposed in which a single Brownian
ratchets(correlation, flashlng, et):.l_s n Re_f. [4]. Among . particle displays ANM. Recently, two interesting basic 1D
the.m, we can mention the mulyd|men5|o_nal ratchets i, gels for a single Brownian particle exhibiting ANM were
which by chooslng dlfferent potgntlals, a variety of flow pat- presented19,2(. Although the mechanism of ANM in these
terns from I_am|_nar drifts to rotation can b_e_genere{ter]. 1D models is different, there is similarity in some aspects,
The motivation to study a hypersensitive response hagq,p\ switching between different potential configurations

come from numerical, analytlcal anq expe”.m‘?“t%' studu—;s 0 state$ can take place only when the particle passes specific
a nonhnear Kramers oscnllator with m.ult.lpl|(.:at|ve .Wh'te positions. For example, for the spatially continuous model in
noise. U”def the effegt of intense muItlpI|cat|_v¢ noise t.he[l9] the corresponding positions are the minima of the peri-
system is able to amplify an ultrasmall deterministic ac sig-, - potential with two minima per period. Note that as a

result of the localized transitions between the different states,

dependence of the stationary current on the switching rate

*Electronic address: ako@audentes.ee disappear$19].

hypersensitive response, absolute negative molgitityM ),
and negative differential resistan@dDR).

The recent fashion for the ratchet effect, i.e., a directe
motion of Brownian particles induced by nonequilibrium
fluctuations, with no macroscopic driving applied, in spa-
tially periodic structures has started with Magnasco’s theo
retical work[5]. The initial motivation in this field has come
from cell biology, in particular from the studies of the
mechanism of vesicle transport inside eukariotic cglls6).
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As the “three-layer” basic diffusion mechanism for ANM fast-noise limit, low-temperature case, etc. Section IV con-
described if19] is robust enough and can be easily realizedtains brief concluding remarks. Some formulas are delegated
experimentally, we were to apply a similar approach to 1Dto the Appendix.
models, where the transitions between different potential
configurations are not localized at discrete points, i.e., the
transitions appear rather in finite intervals. It is of interest,

both from theoretical and practical viewpoints, to know \yg consider overdamped motion of Brownian particles in
whether such a modification of the basic model can cause

novel unexpected effects. a one-dimensional spatially periodic potenﬁaﬁ/(iﬁ L) of

In this article, we consider one-dimensional overdampead periodL and barrier heighY/O:T/maX—T/min. The additional
dynamical systems, where Brownian particles move in a spayyce consists of thermal noiséf) with a temperaturd, a

tially periodic piecewise linear symmetric potential, which . i~
has one minimum per period. The applied force consists of°lored three-level Markovian nois&x,?), and an exteral

an additive static force and of a noise term composed o$tatic forceF. The system is described by the stochastic dif-
thermal noise with a temperatui2 and a nonequilibrium ferential equation
three-level colored noise with a switching rateThe three-

1. AMODEL WITH A THREE-LEVEL NOISE

level noiseZ(t), taking the valueg, € {f,0,-f}, is assumed dX  dVX) = o~ e~

to be spatially nonhomogeneous, so that transitions between k— =———=+F+ 1)+ fZ(X]D), (1
the statesz;=f, z,=0 and between the states=0, z;=—f dt dX

can take place only in the left half-period and in the right _

half-period of the potential, respectively. where k is the friction coefficient and is a constant force.

Our purpose is to report some interesting phenomenaghe thermal fluctuationg(f) are modeled by a zero-mean
which take place in simple one-dimensional systems degayssian white noise with the correlation function

scribed above, arising as a consequence of interplay betwe ~ _ S .
a nonequilibrium noise, thermal noise, and deterministic%’?(tl)‘-’E(tZ»_2Kk~E‘T5(fl t2), wherekg is the Boltzmann con-

force. On the basis of an exact expression for the current watant. The ternz(X,%) represents spatially nonhomogeneous

have found a number of cooperation effecis:a resonant- fluctuations assumed to be a three-level Markovian stochas-

like behavior of ANM at intermediate values of the switching tic process taking the valu&s=-1,7,=0,7Z;=1. The prob-

rate; the presence and intensity of ANM can be controlled byapilities W,,(t) thatZ(X ) is in the staten at the timéf evolve

the switching rate and by temperatu(e) the existence of a according to the master equation

negative differential resistancéii) for large values of the

switching ratev and a low temperatur® the current is, at d 3

some values of the tilting forcE, very sensitive to a small —W, () = > U Wi (D), (2)

variation of F—a phenomenon called hypersensitive differ- dt m=1

ential respons€¢HDR), and in the region of HDR the value

of differential mobility can be controlled by means of ther-

mal noisej(iv) for certain system parameters, there is a finite _ _

interval of the tilting force where the current is very small as _ (), &), 0

compared to that in the surroundinfihe effect of “disjunct u ux), -1, X (3)

windows” (DW)]. It seems that the behavior mentioned last = _=

. . 0, X, -2KX)

is a new anomalous transport phenomenon for Brownian par-

ticles. _ _ and& () =0(%-L/2), 3(X) =0(L/2-%); O(x) is the Heavi-
We emphasize that to our knowledge such a rich variety; o function. By applying a scaling of the form

of anomalous transport effects have never been reported be-

fore for an overdamped Brownian particle in a 1D periodic ~ ~

structure with a simple symmetric potenti@ith one mini- X = >_(, V(x) = V_G()

mum per periogl L Vo
It is known [4—8] that the models with the ratchet effect

are characterized by a nonzero current if the tilting force is

absent(F=0), and, thus, they inevitably involve some kind f= L?, (4)

where

N | =

1
t::y g:—, F:_F’
to

of asymmetry. In contrast to that our present model with the Vo
effects of ANM, NDR, and HDR is symmetric fd¥=0.

The structure of the paper is as follows. In Sec. Il wewe get a dimensionless formulation of the dynamics with the
present the model investigated in this work. A master equapotentialV with the property/(x) =V(x—- 1). By the choice of

tion descr_iption of the_: dee_' is given and a correspondinglo:KLzlvo the dimensionless friction coefficient turns to
exact stationary solution is discussed. In Sec. Ill we analyz%nity The rescaled noises are given by

the behavior of the current. Omitting the rather lengthy ana-

lytical exact solution and referring instead to the representa- 2

’ . B - . Ly 1 1

tive results depicted in figures, we will analyze the behavior v=——, (X =0|x-=|, a(x)=0(=--x],
of the current at different limits, such as the slow-noise limit, Vo 2 2
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keT

D=—2
Vo

: ©)

where D is the strength of the rescaled zero-mean Gaussian
white noise(t). For brevity’s sake, from now on we shall
call D temperature. The dimensionless dynamics reads as

dX _ dv(x)

G- FFrED+fZXD, (6)

where the rescaled nonequilibrium noi&gX,t) is character-

ized by the transition matrixJ of the form )

L[k, a0 0 025 05 05 1
U=—| ay(x), -1, aXx |. x
0, ay(x), —ay(x) FIG. 1. Schematic representation of different states and their

. transitions in the mode) with the sawtooth-like potentidll0) at
Let us observe that the three-level stochastic proZexst) low temperatures. The lines depict the net potential)=V(x)

with property (5) is actuallylindependentlfrom the position —Fx—z,fx with z,=-1, z,=0, andzs=1. Unbiased transitions with
variablex in the intervaIE(O,E) mod 1 and(E']-) mod 1,and 5 switching rater can take place between the discrete states, but
the transition probability per unit tim&!) i=0,1, n,m only at specific positions, namely, in the intervat (0,3), modulo
=1,2,3, for aflipping from the statez, into the statez, 1 betweenV, and Vs, and in the intervak e (3,1) modulo 1 be-

factorizes, i.e., tweenV, andV;. All quantities are dimensionless with scaling by

: Egs. (4) and (5). (@) The case ofF=1, f=4. (b) The case ofF
Ugr)n:Qi(Zn)Vi(zm)y n#m, =1.6,f=3.

where indices =0 andi=1 denote the interval@,%)mod 1

and (3, Jmod 1, respectivelyQy(1)=Qqy(0)=3, Qo(-1)=0, J " S dx = f " 3(x)dx

V0(1)=V0(0)=V, VO(_]-):01 Ql(o):Ql(_l):Ei Ql(l):O! 0 2 0 3 ,

v1(0)=v1(=1)=v, v1(1)=0. It means that the procegs$X,t)

can be presented as the sum of two kangaroo processes 1 1

Z(X,1)=Zy(t) 5 1+ Z4(1) 51 [28]. If the kangaroo processes J P3(x)dx= f P3(x)dx. 9

1/2 1/2

Zo(t) andz,(t) are statistically independent, which is the case

addressed in the present paper, then the two-dimensional prgg derive an exact formula fat, we present an analysis of
cess{x(t),z(t)} is Markovian and its joint probability density the system of Eq(6) for a piecewise linear sawtooth-like
Pn(x,1) for the position variable(t) and the fluctuation vari-  symmetric potential,

azbslse z(t) obeys the master equation of the fo(see Ref. _(2x-1), xe(0.1/2 mod 1,
[28]) V(x) = (10)
(2x-1), xe(1/2,7) mod 1.
J J J
EPn(x,t) == 5[ (h(X) +F+2z,f- D&_x> Pn(X,t)} The forceh(x)=-dV(x)/dx being periodic, the stationary dis-
tributions P3(x) as solutions of Eqg7) are also periodic and
+ 2 UpnPr(X,t), (7) it suffices to consider the problem in the inter{@l 1). The
m force corresponding to the potential of HG0) is
with m,n=1,2,3; z1=-1, =0, z3=1; h(x)=-dV(x)/dx. _Jhe=2, x € (0,1/2,
More precisely, in the intervald, 1) the master equatiof¥) h(x) = hp=-2, xe (1/2,D. (11

splits up into two differential equations P;(x,t) ) _ _ _
=(Py;,P,,P5)(i=0,1), defined in the intervaléo,%) and A schematic representation on the three configurations as-
sumed by the “net potentiald/,(x) =V(x) - Fx-z,fx associ-
ated with the right-hand side of E¢) is shown in Fig. 1.
Regarding the symmetry of the dynamical systédy we
notice that)(-F)=-J(F). Thus, we may confine ourselves to
) d\ i the casd-=0. Obviously, forF=0 the system is effectively
() ={h(x) +z,f + F - DX PR, I=2](), (8) isotropic and no current can occur.

" As the forceh(x) is piecewisely constant E7) splits up
whereP;(x) is the stationary probability density for the state into two linear differential equations with constant coeffi-
(x,z,). It follows from Eq.(7) that the currend is constant. ~ cients for the two vector function®{(x)=(P3;, P3;,P3)(i
In the stationary case, the total net probability flux between=0,1) defined on the interval&),%) and(%,l), respectively.
the states1i=1,2,3must vanish, implying The solution reads as

(2,1), respectively.
The stationary current is then evaluated via the current
densities
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4 T T T
Ni(F)x
P = Anio+ 2 CicAnik exp{ IKT} : (12)
k=1
\
whereA,j; and A,y are given by
A= oot 6 oo+ F) Anir = &,
nio i0 n,2i+1 )\il(F) ’ i1 n,2i+1»
Asir1ij=0, Agi=1, ~
2\;;(F)

Az-ziij= 1"‘_DJV_[hi +F-Ni(F)], j=2,3,4,

Cip, Cix are constants of integrationg(F)=-\(-F)=2

_ — ; FIG. 2. The currentl vs the applied forcd= in the region of
+ — - - —_— pu
F~1, and{AqdF)=-Ay(-F) k=2,3,4 is the set of roots anomalous mobility(a) The general casgEq. (Al)]. Dashed line
of the algebraic equation

(1): D=107?, »=102 and f=1.9. Dotted line(2): D=1072, v
_ _ =107, andf=3. Solid line(3): D=10", »=10%, andf=3. Note that
APB)INF) - @2+F+H]INF) - (2+F)] in the cases of curve€) and (3) the phenomenon of absolute
fy\]_ negative mobility occurs(b) The case of an adiabatic limjEgs.
—vD|NMF)-{2+F+_]1=0. (13 (A3)—(A7)]. Here the temperatur® is zero and the curves corre-
spond to(1) f=1.5,(2) =3, (3) f=5, and(4) f=7. All quantities
Ten independent conditions for the ten constants of integraa'e dimensionless with scaling by Eqé) and(5).
tion Cy,k=0,1,2,3,4, and for therobability current] can
be determined at the points of discontinuity, by requiring . RESULTS
icgntlnwty and periodicity for the quantitie®(x) andj;i(x), A Anomalous resistance
The quantities of central interest are the average particle
<1y (1 S s currentJ and its response to an applied forEe i.e., the
- Pn1 nO(O) - Pn1(1)1

no\ o

2 2/ differential mobility atF=F,
dJ(F)
(1) (1 . . Mpp. = —— 16
Jno<§> :]nl<§)! jno(0) =jna(1), n=1,2,3. (14 IF=ry dF |rr, (16
As it follows from Eq.(7) thatJ=const[see also Eq:8)], the  In the case of a small applied force,
system of linear algrebaic equatio(4) contains only ten
linearly independent equations. By including an eleventh dJ(F)
(normalization condition, my = —dF 17
F=0
3 r1 . .
PS(x)dx=1, 15 will be called mobility.
n% 0 %) (19 For the general case, the exact equatiah) for the cur-

rentJ enables us to establish a number of effects character-
a complete set of conditions is obtained for the ten constantzing anomalous behavior of the resistarioe mobility).
of integration and for the probability curredt This proce- Later Fig. 2a) illustrates the behavior of the currehias
dure leads to an inhomogeneous set of eleven linear alge: function of the tilting force- in the region of anomalous
braic equations. Now] can be expressed as a quotient of tworesistance. It appears that the curves are highly nonlinear. For
determinants of the eleventh degree. The exact formula, be&urves(2) and(3), the phenomenon of absolute negative mo-
ing complex and cumbersome, will be presented in the Apbility occurs: the particle moves in the direction opposite to a
pendix[Eqg. (A1)]. It will be used to find(i) the dependence small external forcé&. Moreover, all curves exhibit intervals
of the current) on the tilting forceF and the dependence of of F where particle speed decreases as the applied drive is
the mobility m=dJ/dF on the switching ratev, which are increased—an effect that is termed negative differential re-
displayed in Fig. 2a) and Fig. 4, respectively, an@i) the sistance. In the case of cur¢® two additional effects occur.
asymptotic limits of the current at a low temperature, fast-First, one can see a hypersensitive response—the jumps of
noise, and adiabatic noise. The behaviorJo&t different the current aF=1 andF~2. Second, at a low temperature
system parameters regimes will be considered in Sec. Ill. Aland a large switching ratethe current exhibits characteristic
numerical calculations are performed by using the softwarédisjunct windows” of the tilting forc§2<F < 3,5 for curve
MATHEMATICA 4.1. (3)], where the value of the current is very small.
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1/2 1

Jl=2] i(x)(Z—f+F)dx=—2f S)(f + 2 =F)dx,
In this section we examine a simple, yet physically impor- 0 112

tant case of the adiabatic limit at low temperatures that cap- (19)
tures some features of the general system, including absolute

negative mobility and negative differential resistance. We 12 1

start from the asymptotic formulag#3)—A7) for the current J3= 2] P5(X)(2 +f + F)dx= 2f P5(X)(f + F = 2)dx.
Jreproduced in the Appendix. In Fig(l® we plot a series of 0 1/2

curves ofd vs the tilting forceF at various noise amplitudes (20)
f, showing that four different types of the grapkl§F)

emerge. These four types 8fF) correspond to four charac- Equations(19) and(20) are consistent with the fact that the
teristic regions for the parametérf<2,2<f<4,4<f<6, flux of particles is continuous.

B. The adiabatic limit in the case of low temperatures

andf>6. (i) If f<2, the current is zero foF<2-f and at For the total current we have

the pointF=2; for 2-f <F <2 the positive current exhibits J= A0 (2 —F+F) +Dar(2 +f+F

a bell-shaped extremum, andqf> 2, thenJ increases mono- L )+ Pail )]

tonically from zero (i) In the case of 2 f<4, the current =2 paAf+F=2) - pf+2-F)], (21

exhibits a reversal of the direction B=f-2, if F=2, then _ (12 os _l ps
J=0; the current reaches two local minima and a local maxi-WhErep”lE_ 018P”(X)dg’t p.“z_flfz Pa(x)dx
mum at a finiteF. (iii) For 4<f<6, the behavior of] is rom Eq.(18) we obtain
characterized by current reversalsFatf—2 and by one lo- F+2
cal extremum(minimum); no negative differential resistance P22= P21y e F<2, (22
for a positive current occurgéiv) If f> 6, the current behaves
similarly as in the case dfi); however, the zeros dfappear i.e., upon the application of a tilting forde> 0 the particles
at the values of the tilting forcE=[2(2+f)]“2 andF=f-2. will preferentially reside on the right-hand side of the net
Note that negative differential resistance for a positive curpotential V,(x), facilitating entry into the state@=1 where
rent disappears only in the case 0£4<6, while absolute the motion is biased into the negative direction. Now, using
negative mobility is absent only in the case fof2. The the stationarity conditiong,;=pz1, P12=P22 [s€€ EQ.(9)],
existence of four characteristic regions foand the corre- and the normalization conditiofi5) we get the formula
sponding behavior o§(F) are closely related to configura- FF[(f - 22— F7]
tions of the net potential¥,(x) =V(x) —Fx-z,fx associated =- 5
with the right-hand side of Eq6). For example, in case (F-2)(3f-2)-F
f<2 and O<F<2-f, the net potential®/,(x) for all states  with f>2 andF<min{f-2,2. Thus, we have obtained a
n=1,2,3 of thenonequilibrium noiseZ have minima alx  result of the Appendix, namely, E¢A6). The effect of ANM
=1/2.Hence, at a zero temperature in a stationary state thgppears because of a regulative role of the statg. The
particles are locked in the potential minima and there is n@rucial observation now is that the application of a small
current. tilting force F along thex axis will favor the concentration of

Let us note that the sufficient and necessary conditioparticles on the right-hand side of the net potendgk) that
f>2 for the existence of absolute negative mobility has &g characterized by a flatter slope than the left-hand side. The
distinct physical meaning: fof>2 and F<f-2, the net negative current happens because of the transitions between
potentialsV,,(x) in the states=1,3 aremonotonous func- the statesn=2 andn=1; hence, negative mobility can be
tions [also see Fig. (] and hence in the state=1 the  expected if this effect is larger than the linear effect of a
particles will move in the negative direction. In this case,direct response to the tilting force. Note that an analogous
absolute negative mobility is possible and can be physicallyrocedure can be repeated in a straightforward way for all six
understood. Let us take a closer look at the latter statemengdifferent net potentiaV/,(x) configurations that appear by the
The adiabatic limit occurs when— 0. In the low frequency variation of the parametersand F. The corresponding re-
domain there is, in each of the three states, enough time fajyits coincide with the formulagA3)~A7).
the probability distribution to relax to and spend most of the  Next we shall consider the phenomenon of negative dif-
time in the stationary probability distribution belonging to ferential resistancéNDR) for a positive current. In the case
that state. For a sufficiently low temperatibe<1 the prob-  of 2< f<4 andf-2<F <2 the corresponding net potential
ab|l|ty dIStI‘IbutIOI’l in- then:2 state can be approximated by Vn(X) Configuration is shown in F|g(ﬂ)) At a low tempera_
the Boltzmann distribution, ture, D—0, a particle cannot move freely along the poten-

tials V; and V,. However, if switching is allowed between

Vz(X):| the potentialsv,, n=1,2,3, theparticle will move downhill

<0, (23)

(18)  along the potentiaV/; and the total current is positive. The
stationary probability densitie}(x) and P3(x) for the states
n=1,2 aredetermined by the Boltzmann distributiofelso

where C, is the appropriate normalization constant. In thesee Eq.(18)]. The physical mechanism for NDR is evident

staten=2 the current), is zero. The currend; in the state  from the considerations mentioned above at @8). As the
n=3 and the currend, in the staten=1 are tilting force F increases, the slope of the right-hand side of

P3(x) =C, exp[—

041107-5



HALJAS et al. PHYSICAL REVIEW E 70, 041107(2004)

the potentialV,(x) decreases and the fraction of particles T $=19 '

locked in the staten=1 and on the right-hand side of the 0.5 == .

potentialV/, increases. Consequently, the fraction of the par-
ticles in the state=3, (p31+p30) ~ (2—F), decreases and the
total currentJ(F)=2ps,(2+f+F) versusF is a decreasing
function, at least in the case whénis great enoughF
=~2). The corresponding formula fa is represented in the

Appendix [Eg. (A3)]. Now, from Eg.(A3) the differential 0.2 0.4 0.6 0.8 1
resistance aF=2 can be derived: b
(16 _fz) FIG. 3. The mobilitymy vs temperatur® at various noise am-
lpp=———-<0, 2<f<4. plitudesf in the case of an adiabatic limiEqg. (24)]. Note that in
2(8-f) the case of <2 the mobility is positive for all values dd >0. At

If £>2, the phenomenon of NDR different from those Con_Iarge values of the temperatu@,> 1,the mobilitym, saturates to

sidered above can be observed in the tilting force interval, 1€ value 1. The dots were computed by means of the exact equa-
tion (A1) with f=6, v=10"°. All quantities are dimensionless with

0 <F <{(f-2)[2(2f - 1) - [f(13f - §)]¥2]}V2. scaling by Eqs(4) and(5).
In this case NDR is associated with ANM and the current is . .
negative[see Fig. 2)]. the mobility my as a funcfuon of the te_mperatufbfor four
different values of the noise amplituden the case of a low
switching rate limit. In this figure, one can also observe ab-
solute negative mobility at small and intermediate tempera-
Next we will discuss the effect of absolute negative mo-tures, which apparently gets more and more pronounced as
bility. At a long-correlation-time limitv— 0, Egs.(7) for  the noise amplitudé> 2 increases. The tendency apparent in
P3(x), P5(x), andP(x) are decoupled and the total current is Fig. 3, namely, an increase of the critical temperaigéthe
given by the average of each current for the correspondintemperature at which the phenomenon of ANM disappears
potential configurations. The result is represented in the Apas the amplitudé grows, also takes place in the case of large
pendix[Eq. (A2)]. In this case, our analytical solution for the f, e.g., if f>6. At sufficiently large values of, f>2, the
mobility (17) of the systen(6)reads as formulas for the leading-order terms of the mobility, and

_(2-H){2B-3-f+a[f+4(2+f)y/(1-2B)]} of the critical temperature are
o= o[3f-2+26-1)8] *

C. Absolute negative mobility

1 f 1~

(24) moz—{l——(a—l)], D<f, D.==Vf. (26
a 3 6

where

o= [ZD sinh(i)r In Fig. 3 we can see that the asymptotic form(28) for D,
' is in agreement with the exact result fioe 6. It is remarkable
that the phenomenon of ANM occurs also at high tempera-
4D(g271120) — 1) (1 — g (2+1120)) tures, if only the noise amplitudé is large enough. The

B= (P—4)(1-e D) ) physical mechanism appropriate to generate regais is
€ analogous to those considered in Sec. Il B. The key-factor is
the stationary probability distributio5(x) in the staten
2 2f 1+ =2. However, as the temperature is relatively high, causin
')/22 =+ > =+ D . __'__ " - p : ; y ga. g
fe-4 fe=4 2D(1-€"Y) significant diffusion over the potential barrier, the stationary

In the high temperature limid> 1, the mobility tends to 1 probability densityP3(x) is not determined by the Boltzmann
and the system does not exhibit’ANM. In the case of Zerodistribution and in the state=2 the fractional curreng,

temperatureD=0, one finds from Eq(24) that in the as- 9&_0. Instead of Eq(18), the stationary probability density is
sumptionf>2 the mobility equals given as
_=f(f-2)
Co3f-2

1+x

P3(x) = CeV2/D f eV2¥/0qy, (27)

X

(25)

supporting ANM in agreement with Figs. 2 and 3.fK 2,

we can see tham, tends to zero a® —0. This result is

consistent with the physical intuition that at deterministicwhereC is the appropriate normalization constant.
stationary stategminima of potentialsthe probability den- Focusing on the small tilting forcé& — 0, we obtain that
sities P3(x) are & distributed: the random variablg takes P~ P{1-F[1-(1/a)]} and J=(1/3a)F+2[psy(f+F-2)
valuesz,=1,0,-1 for asufficiently long time to allow the —p;o(f+2-F)], which, by virtue of Eqs(9), (15), (19), and
deterministic stationary state to be formed. Figure 3 show$20), yields the expressiof26). The destructive influence of
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temperature for ANM is twofold. First, the thermal diffusion
generates a positive curredf~ (1/3a)F in the staten=2

PHYSICAL REVIEW E 70, 041107(2004)

creases as temperatubegrows.
Figure 4 shows a plot afy as a function of the switching

and, second, in agreement with physical intuition, the asymerate v at various temperatures. For low temperatuis; 0,

metry of particle distribution 1p,1/p,o)=F[1-(1/a)] de-

__ vf-2)(F+4{16a(2+1)°+ w(@+ 1)(4 +H)[*+ 4f + 8]}

andf>2, the mobility is approximately given by

8a(f + 2)[3vf(f + 4) - 32a(f - 2)] '

with

~ v(f+4)
8(f +2)

e 18]

[also see EqA9)]. In this case the mobility is always nega-
tive and m, decreases monotonically frommy=—f(f
-2)/(3f-2) to the value

(-4
3f

(29)

as the switching rate grows.
It is remarkable that the absolute valuengf increases as

v—oo, yD<1. This phenomenon can be physically under-
stood, taking into account that the fraction of particles effec

tively locked in the potential minimum of the state=2
reads as

_ 8a(f-2)(f+4)
C 3f(4+f)-3%(f-2)

(30)

More precisely, fom=2, the parametep is the probability

that the position of particles coincides with the deterministic

stationary statx=1/2 (a stationary stable point in the ab-
sence of noise At the adiabatic limitv— 0 the parameter
p=(f-2)/(3f-2). For v—o we getp=8(f-2)/3fy; thus

the locked fraction of particles decays algebraically to zer

in v L

Two important asymptotic regimes occur in tife+ 0
situation: first, the regime of low diffusion level3r<1 for
which the characteristic distances of thermal diffusi@w,

are much smaller as the typical deterministic distances of the

driven particles during the noise correlation timg=1/v,
and, second, the reginizv> 1, dominated by thermal diffu-

sion. In the regime of low diffusion the temperature is small

enough,D <D.~ f/6, for the phenomenon of ANM to ap-
pear, contrary to the case Bfv>1, where the mobility is
positive. At the fast-noise limity— o, Dv— o0, the mobility
my can be easily found from the asymptotic formyks8)

represented in the Appendix. Finally, a most salient interme-

(28)

D. Hypersensitive differential response

Next we will discuss both the effect of “disjunct win-
dows” (DW) and the effect of hypersensitive differential re-
sponse(HDR). Both effects appear at large values of the
switching ratev and low values of the temperatube Figure
5 exhibits the behavior of the curredtversus the tilting
force F in the region of an anomalous differential response.
Here the curvg5) demonstrates the DW effect. As already
mentioned, at large values ofthe current exhibits a charac-
teristic  disjunct zone of the tilting force, 2
+(f/2)>F>max2,f-2}, in which the current is very
small. The necessary conditions for the existence of the DW
effect are the regime of a small diffusi@w<1 and a large
v. Hence at a low temperatur®— 0, the DW effect can
analytically be examined by EqA10). In this case for 2
+(f/2)>F>max2,f-2} the current is exponentially small,
J~ ve™ with d—a constant.

As the diffusion is negligible the physical mechanism for
DW is simple. For the described interval Bfthe net poten-
tial V1(x) exhibits a minimum and the potentials(x), V5(x)
are monotonic functions. If the correlation time of the noise
7.=1/v is small enough, a particle in the state2 cannot,
before switching to the state=1, move to the next spatial
period and, consequently, in the stationary state all particles
are concentrated at the potential weél(x) and on the right-
hand side of the potentid,(x). This is because the absolute

alue of the deterministic velocity of particles on the right-

V
C11and side ofV,(x) is greater than the velocity on the right-

hand side olV,(x). It is obvious that the total curredttends

1
05( D=0.1
£ 0
05 D=0.01
-1 D=0
o1 10 10® 10° 100 10¢?

14

FIG. 4. The mobilitym, vs the switching rate at various tem-

diate regime occurs in which the mobility exhibits a perature andf=3. The curves wittb=0.1 and withD=0.01 are

resonant-like enhancement at finite values ¢élso see Fig.
4). For example, in Fig. 4 the curvey(v) with D=0.01
shows an amplification of ANM ab=18.

computed from the exact formul@1) for the currentd. The line
with D=0 corresponds to the asymptotic equati@f). All quanti-
ties are dimensionless with scaling by Eg. and (5).
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‘ ' ‘ ' v(4-f)(8+f)
5r ] Meo=~—-————7, 33
; r=2 267 (33)
- 3 with 2<f<4, D— 0. An extreme sensitivity of the differen-
o r tial negative mobilitym|c-, to the switching ratev can be
1 seen from the factor in Eq. (33)—the absolute value of the
o mobility m|._, increases unboundedly as— . Further-

more, in the case considered héPe<f <4, Dv<1,D—0)
2 2.3 3 3.3 the effect of HDR also occurs &=f-2 [Fig. 2a)]. Accord-
ing to Eq.(All) for F—f-2, the formula for the leading-

FIG. 5. The currend vs applied forceF in the region of nega- order term of the differential mobility reads as
tive differential resistance. The curves are computed from the exact 3u(4 - 1)
equation(A1) at f=3. Solid line(1): D=3%x107°, »=1C". Solid line Mpofp= ———.
with filled dots(2): D=1075, »=10". Dotted line(3): D=5x 1073, 8f
v=10°. Dashed ling(4): D=10"%, v=10°. Dashed-dotted ling5):
D=3x10"°, »=10" The filled dots were computed by means of the
asymptotic formulgA8). Note the hypersensitive resporemps

At the fast-noise limitp— oo, the corresponding jump of the
current can be estimated by the equation

of the current in the cases of curvely, (2), and(5). All quantities 12f(f - 2)
are dimensionless with scaling by Eq4) and(5). AJ|F:f_2= W
to zero asv— =, since the trapping probability i, (x) and To illustrate the phenomenon of HDR in the “strong dif-
V,(X) tends to 1. fusion” domain,Dv>1, we are restricted to the low tem-

The described scheme is valid only for low temperaturesPerature casé) <1. At the fast-noise limity— x, one finds
Otherwise, a particle is able to pass potential barriers in botffom Eq. (A8) that the differential mobilitymle=y.t12 be-
directions by a thermally activated escape. However, it prehaves asymptotically as
dominantly moves to the right and a positive current occurs. Hf+8)

In Fig. 5, the curve5) demonstrates also the phenomenon Mecose =~ s oo, 0<f<8. (34)
of HDR, i.e. jumps of the current with a large derivative for 2D(3f +8)

some values of the tilting force, atF=2. The jump ol at ¢ j5 obvious that the absolute value of the differential mo-
F=2 can gstlmated with the help of the foIIow!ng physlcal bility m|g-y.;/2 increases unboundedly 85— 0. The corre-
considerations. Ay— o, vD<1 andD — 0, the dl_ffu5|on is sponding jump of the current iAJ|F=2+(f,2):—4f(8+f)/(f
very small and the actual three-level net potential configura- S
tion is equivalent to a two-level average net potential con-+4)(3f+4)' Th? depen_derpe of the_currze](lF)_on the tilting
figuration Vo, and Va,q. The potentialV,,q is character- force F_for a fixed _sw@chmg rate’=10'% a fixed tempera-
ized by the effective forces 2#/2)+F and f+F-2 in the tUreD=10" andf=3 is shown in Fig. 5 as curve&). We

left-hand and right-hand sawtooth sides, respectively. Th&an see that. the asymptotic formL(IAS). IS In excel!ent
net potentialV,,, has a local minimum at=1/2 with the agreement with the exact results. According to numerical cal-
avg -

corresponding effective forcds+2—f andF—2-(f/2). Due culations from the exact equatios2)—(15) we emphasize

to very small diffusion the fraction of particles in the poten- that thz gﬁect.otf HDF;. ?F:ZT(ZZE) 1S extr;me]t);] 3:0'
tial well V¢, is negligible and this leads to the circumstance©unced In an intermediate regin@,/b) ~ y—%, W N
that the formation of the current is determined\gy,,. So  Currént picking up from zergalso see curvel) in Fig. 5. It

the current] can be found, by using the continuity of particle ig; _remarkable that in the case of fast noise 'ghe value of the
flux and the normalization condition, from the equations ~ Ulting force F=2+(f/2) corresponds to the critical value of
F at which the average net potentials configuration changes.

The appearance of HDR is not confined to the cases de-
scribed above. I#— « andD — 0, the phenomenon of HDR
can occur, depending on particular values of the parameters

P+ py=1, (31  vDandf, atF=2+(f/2), 2,f-2. For example, in the case of
_ . 2<f<8, Dv>1, we have m|g_;_,~f(f-2)/6D(2f-1)°
wherep,; andp, are the stationary probabilities that a particle Ngte that all these values & correspond to a change in the
is located in the intervalg e (0,1/2), andxe (1/2,1), re- et potentials configuration.

spectively. Fom Eqgs.(31) we obtain thatJ|p_,_,=2f(f
+8)/(3f+8)+0O(e) and one finds for the jump of the current:

2f(f +8)
o ! (32 Above, we have presented some exact and asymptotical
3f+8 ! . )
results for the dynamics of an overdamped Brownian particle
with e — 0. Note that this result can be obtained also straightin a periodic, symmetric, one-dimensional sawtooth potential
forwardly from Eq.(A11). Moreover, from Eq(A1l) it can  landscape subjected to a static tilting force and to both ther-
be easily shown that mal noise and spatially nonhomogeneous three-level colored

f
J=2p,(f+F-2), p42+F+5>:mﬁ+F—2x

IV. CONCLUDING REMARKS

A== Jp=zse = Jp=2-s =~
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noise. A major virtue of the proposed model is that an intercase of a small input signal-to-noise ratia(t)|/\D<1. For
play of three-level colored and thermal noises in tilted ratch-example, in the case described by the form@4), i.e., the
ets with simple symmetric sawtooth potentials can generate fiting force F:2+%f+w(t), the system may be able to am-
rich variety of cooperation effects, namely, absolute negativg)ify an ultrasmall deterministic ac signas(t) up to the
mobility (ANM), negative differential resistan¢®DR), hy- value of the order of unitycf. [12,13). This conjecture pre-

gﬁgsneg?'f'c\i’ig.L?:éfﬁg&%&g?g%f%?mé %ﬂ?ﬂ thf%rggenom— sents an objective that is worthwhile to be addressed in
) 9 ' greater detail in the future.

For both slow and fast fluctuating forces, and for low S <inal h at a low t ¢ dal
temperatures, we have presented analytical approximations urprisingly enough, at a low temperaturé and a large

that agree with the exact numerical results. One of our majopWitching rateDv<1, the current is very small in the finite
results is a resonant-like enhancement of absolute negativaterval of the titting force, 24f>F>max2,f~2}. This
mobility at intermediate values of the switching rate of non-novel feature for a Brownian particle is, so far, mainly of
equilibrium noise (also see Fig. ¥ Two circumstances theoretical interest while applications are not clearly identi-
should be pointed outi) A resonant-like behavior can occur fiable yet.

in a system parameters domain where the characteristic dis- Finally, we believe that the model discussed here is par-
tance of thermal diffusion/D/v is comparable with typical ticularly suitable for an experimental realization along the
deterministic distances for the driven particles during theines described in Ref19], e.g., for particles suspended in a
noise correlation time(ii) There is an upper limit tempera- hydrodynamic flow.

ture D, beyond which the phenomenon of ANM disappears.
Notably, at increasing the noise amplituti¢he critical tem-
peratureD, grows asD.~ \f, [see Eq.(26)]. It is obvious
that the presence and intensity of ANM can be controlled by This work was partly supported by the Estonian Science
a thermal noiseg(also see Fig. B The advantage of this Foundation Grant No. 5943 and the International Atomic En-
model is that the control parameter is temperature, which casrgy Grant No. 12062, for which the authors extend their
easily be varied in experiments. Moreover, as in &).the  gratitude.

friction coefficient« is absorbed into the time scale, so, in

ACKNOWLEDGMENTS

t_he originlal.(unscaleoi set-up, the par_ticles of diﬁer_ent fric- APPENDIX: FORMULAS FOR THE CURRENT
tion coefficients are controlled by different switching rates.
According to the suggestions j4,7,8,29, this can lead to an Here the exact formula for the curredt and some

efficient mechanism for the separation of different types ofasymptotic formulas following from Eqg11)—<15) will be
particles by exploiting the sensitive dependence of theepresented.
current-load characteristics on the switching rédtso see

Fig. 4 and Ref[18)]). 1. The general case

The phenomenon of ANM in systems similar to ours have .
been studied if19]. However, in contrast to ours, in those givl;og;/Eqs(ll)—(lS) one can conclude that the curreris

models the authors choose a symmetric poteia) with
two minima per period. Perhaps the most fundamental dif- defB, (1 -6 ,) + &8 115 ol
ference is that in the models ff9] unbiased transitions can = de(iB ) E—
take place between the discrete states only at the minima of Ir
potentials. As a consequence the dependence of the curremhere the matrixB,),l,r=1,...,11 is defined as follows:
on the switching rate disappears.

Our another major result is establishing the effects of both

(A1)

5n,l _ 5n,3

HDR and DW at large values of the switching ratand low Brea 2= B2 = F+2-f F+f-2
values of the temperatur@ [also see Fig. 5 and Eqé&33)

and(34)]. We emphasize that our mechanism of HDR is of a h +F
qualitatively different nature from a recently found effect, Bnigas1 = Bais1 =1 _35n,2i+1ma
where a noise-induced enhancement of the current of Brown-

ian particles in a tilted ratchet system has also been estab-

lished[13,14. In the mechanism reported here hypersensi- Bnis2= On1~ dna,

tivity is achieved by a combined influence of fast

nonequilibrium noise and a tilt-force-induced change of the Bnis a+1 = (F + 0y +2,f)Brgisg,
net potentials configuration. It should be pointed out that in

the present model the effect of HDR is pronounced in the B1g2=1,Bigz+1=(hy+F = )By 5.1,
case of a fast switching of thenonequilibrium noise, while in

the models of Refs[13,14 the hypersensitive transport is = 3f

generated by low or moderate values of the switching rate.
It is quite remarkable that the results of HDR seem to be

applicable for amplifying adiabatic time-dependent signals

w(t), i.e., signals of much longer periods than the character- Byy 5= — 3f

istic time of establishing a stationary distribution, even in the 20F-2+1)’

Biis=————5.Bui=—————,
H2mp2 (-7 22 +F-1)
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)\ik(F)i|

Bn ke3+4 = Anik exp[ oD

Nik(F)
Bhi3 kea+4 = Anik X D Gl

Brs6 kea+a = LN + F +2,f = Ny (F) 1By, ke3+4is

Bio kez+a =[hi + F = T = Ny (F)1B1 w344

D 3
Bi1 keaes = —)\'k(F) 2 (By ksava ~ Bris keaea).
i n=1

with n=1,2,3;i=0,1; k=1,2,3,4;hy=2, hy=-2, z=-1,
2,=0, zz=1, and the quantitie8,;,, \i(F) are the same as in
Eq. (12).

2. The adiabatic limit

At the adiabatic limitv— 0 the form of the leading term
of the stationary current is

_ 2[F2-4+B(F)+B(-F)]
" 4[F-4A(0,F)]+C(F)-C(-F)’

(A2)

where

1-2A(0,F)

B(F) = (F+2(F-2-07 5, o

1+2A(f,F
oF) =) 2,

_ 4D{cosH1/D) - cosh(f - F)/2D]}

All.F)= [(f - F)2 - 4]sinH (f - F)/2D]

In the case of low temperatur® — 0, the Equation(A2)

PHYSICAL REVIEW E 70, 041107(2004)

(i) If f<2, then there is no current &s<2-f, J=0. For
2>F>2-f we have

_(2+f+P)(2-P[F?-(f-2?]
I= 16f - (4 - F)[f2 +4 - F2] : (A3)

If 2<F<f+2, then

_(F+2F+4)(F-2)[F?-(f-2)?]

= . A4
AF[F2-(f- 22+ F2+f2- 4} (A4)
For F>f+2 the following formula is valid:
3F2 - 4f - 12[F? - (f - 2)?
_( )[F2-(f-2?] A5)

F8f + 3(F2 - 2= 4)]
(i) Inthe case of 2 f <4 andF <f-2, the currenf can
be given as

_ fE[(f - 2) - F?]
T (f-2)(3f-2)-F%

(A6)

If F>f-2, then the behavior of is determined by Egs.
(A3)—(A5).

(iii) For f>4 and 2<F<f-2, one finds from Eq(A2)
that

_2[F?-(f-2)2][F?- 2(f + 2)]
"~ F[3(F?-f2-4) +8f]

J (A7)

In the intervals 6<F <2 andf-2<F < the form ofJ is
given by Eq.(A6) and by Egs(A4) and (A5), respectively.

3. The fast-noise limit

In the fast-noise limit, we allow to become largey

reduces to more simple formulas. Three characteristic re— e, holding all other parameters fixed. Thusp® — o, in

gions can be discerned for the paramdter

[F>-(f-2°][(4+f)?

~ 4F°J[AF) - A(- F)]

the largev limit the current can be given as

J

where

i 24D[8F2 - (f - 2)(f2— 16)] + [B(F) + B(- F)J[F? - (f — 2)2][(4 + )2 - 4F?]

(A8)

AF)=(2-F){(f-2-F)a(F) - [f + 22 +F)]B(F)},

~ 2-f+F\ _[* 2(2+F)+f)_ }‘1
a(F)—[exp( D ) 1] ,ﬂ(F)—[exp<—4D 1] ,

B(F) = (f + 2F) B(F) - (f - F)a(F).

with

and
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ANOMALOUS MOBILITY OF BROWNIAN PARTICLES IN ... PHYSICAL REVIEW E 70, 041107(2004

4. The zero-temperature case

In the asymptotic limit of low temperatur®— 0, we find that folF <min{2,f-2}, f>2, the current behaves asymptoti-
cally as

e 2U[(4+1)2 - AF[a(F)(4+f+2F)(f-2+F) - a(-F)(4 +f - 2F)(f -2 -F)]

2 2= = = : (A9)
Y (4 + )= 4F“][a(F)(3f + 4F) + a(- F)(3f — 4F)] - 16a(F)a(- F)(f + 4)
where
o — v(4+f - 2F) )_]
a(F)=(2-F)«f-2 F)[EXP<4(2—F)(2+f—F) 1.
For f+2>F>maxX2,f-2} andf>2, the formula for the leading-order term of the current is
2 _ 2 _ 2_(f_9)\2
3= 21 (4 +1)“— 4F°][4 +f - 2F][F* - (f — 2)7] _ (AL0)
v(2+F-f)(4+f-2F)[8F2-f-F)+3f(2+f+F)]+4(2+F)(8 -)3(F)
with
~ 2+ f-F)Xf-2+F)_
B == o -2 AP
If 2<f<4 andf-2<F<2, then
— A2 _ (f_9)\2
2v(2 -F)(4 +f+2F)F° - (f - 2)7] (ALD)

I 2 F)@F +3N(F + 2 -4+ 1+ 2F) — 4a(- F)F(f + 16 - 2~ 21 + 32]

We note that formulagA9)—<Al1l) can also be applied in the case of the fast-noise limit; o, by the assumption thatD
<min{(F-2)?,(2+f-F)?}.
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